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We study the statistical mechanics of classical Coulomb systems in a low cou-
pling regime (Debye-Hiickel regime) in a confined geometry with Dirichlet
boundary conditions for the electric potential. We use a method recently
developed by the authors which relates the grand partition function of a
Coulomb system in a confined geometry with a certain regularization of the
determinant of the Laplacian on that geometry with Dirichlet boundary condi-
tions. We study several examples of fully confining geometry in two and three
dimensions and semi-confined geometries where the system is confined only in
one or two directions of the space. We also generalize the method to study
systems confined in arbitrary geometries with smooth boundary. We find a
relation between the expansion for small argument of the heat kernel of the
Laplacian and the large-size expansion of the grand potential of the Coulomb
system. This allow us to find the finite-size expansion of the grand potential
of the system in general. We recover known results for the bulk grand poten-
tial (in two and three dimensions) and the surface tension (for two-dimensional
systems). We find the surface tension for three-dimensional systems. For two-
dimensional systems our general calculation of the finite-size expansion gives
a proof of the existence a universal logarithmic finite-size correction predicted
some time ago, at least in the low coupling regime. For three-dimensional sys-
tems we obtain a prediction for the curvature correction to the grand potential
of a confined system.

KEY WORDS: Confined coulomb systems; Debye-Hiickel theory; Dirichlet
boundary conditions.

1. INTRODUCTION

The study of confined classical Coulomb systems has attracted attention
for some time in particular because, in some cases, they exhibit universal
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properties.! ) This universal behavior is present in some correlations
functions® and also on the thermodynamic quantities of the Coulomb
systems. In particular, the grand potential and thus the free energy, exhibit
finite-size corrections which depend on the confining domain.(!)” Two
particular cases have attracted attention: fully-confined systems and semi-
confined systems. On this respect we shall speak of semi-infinite or semi-
confined systems to refer to systems which are confined only in certain
spatial directions and that are infinite in at least one spatial direction (for
example systems confined in a slab), to distinguish them from the fully-
confined systems. In both cases, exactly solvable models in two dimensions
have allowed the explicit calculation of the finite-size corrections in the
free energy for a given value of the coupling constant. For systems con-
fined in a slab of width W with Dirichlet boundary conditions for the elec-
tric potential, in d dimensions, the free energy and the grand potential per
unit area (times the inverse reduced temperature) exhibit an algebraic uni-
versal correction C(d)/ W9~ with

I'(d/2)§(d)
where I'(z) and ¢(z) are the Gamma function and the Riemann zeta func-
tion respectively. This has been shown(! to hold for any general Coulomb
system provided that the system is in a conducting phase and it has good
screening properties. It has also been checked in several solvable models.
The correction is universal in the sense that it does not depend on the
details of the microscopic constitution of the system.

Let us clarify that, in those models, and in this paper, we consider
the boundaries as inert, meaning that no fluctuations of the electric poten-
tial are allowed inside the confining walls. If we were to use these models
to describe a Coulomb system confined by metallic boundaries one should
take into account the charge and potential fluctuations inside the bound-
aries, which create a Casimir effect that cancels the finite-size correction
C(d)/ Wd*l .(5,6)

For two-dimensional fully-confined Coulomb systems there are also
universal finite-size corrections which are similar to those of two-dimen-
sional critical systems. This leads us to another interesting feature of con-
ducting classical Coulomb systems, which is its manifest similarity with
critical systems.1-3) Although the particle and charge correlation functions
of the Coulomb system are short-ranged because of the screening, it has
been shown that the correlations of the electric field and of the electric
potential are long ranged.*”) In this sense they can be considered as criti-
cal systems and they share properties of statistical models at criticality. For
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example, in two dimensions, conformal field theory, which has been proved
to describe and classify correctly critical systems, predicts the existence of
universal corrections in the free energy for critical systems due to their
finite-size.®-19 Explicitly, for any two-dimensional statistical system in its
critical point, confined in a domain of characteristic size R with smooth
boundary, the free energy F has a large-R expansion of the form-?)

ﬁF:AR2+BR—%1nR+~-~ (1.2)

where 8 =1/(kgT) with T the absolute temperature and kg the Boltzmann
constant. The first two terms AR? and BR represent respectively the bulk
free energy and the “surface” (perimeter in two dimensions) contribution
to the free energy. In general, the coefficients A and B are non-universal
(they depend on the microscopic detail of the model under consideration)
but the dimensionless coefficient of In R is highly universal depending only
on the Euler characteristic of the manifold x =2 —2h — b, where h is the
number of handles and b is the number of boundaries, and on ¢ the cen-
tral charge of the model. For Coulomb systems the existence of a similar
expansion, which reads

ﬂF:AR2+BR+%1nR+~~ (1.3)

has been shown to hold in several exactly solvable models at a fixed value
of the coulombic coupling constant!:3:11-13) and in some particular geom-
etries for any value of the coupling.(14-17)

The derivation of the finite-size corrections is based on two different
types of sum rules depending if the system is semi-confined or fully-
confined. For systems confined in a slab, as mentioned earlier, the der-
ivation of the finite-size correction is based on some sum rules for
the charge—charge correlation functions,'!®) thus it is related to the
screening properties of the system. On the other hand, for two-dimen-
sional fully-confined system, the logarithmic finite-size correction has been
derived using some sum rules for the density—density correlation func-
tions.(16:15:19:20) Tt seems that, in this case, the finite-size correction is more
related to the scale invariance of the two-dimensional Coulomb potential
rather than to the screening properties of the system.

In a previous paper®) we considered two-dimensional Coulomb sys-
tems in a low coupling regime, the Debye-Hiickel regime. We computed
the grand potential for systems confined in two simple geometries, the
disk and the annulus with ideal conductor boundaries, and confirmed the
validity of the finite-size expansion (1.3) in those cases. We showed that
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the grand canonical partition function for a classical Coulomb system in
the Debye—Hiickel regime, confined with ideal grounded conductor bound-
aries, can be expressed as an infinite product of functions of the eigen-
values of the Laplace operator satisfying Dirichlet boundary conditions.
The explicit form of this spectrum and the corresponding infinite products,
depend on the shape of the confining domain, and must be calculated for
each particular geometry. By a careful calculation of these infinite prod-
ucts we obtained the explicit form of the grand potential for Coulomb sys-
tems confined in a disk and in an annulus. When these systems are large
we computed the finite-size expansion of the grand potential and we found
the universal correction predicted by Eq. (1.3).

The first purpose of the present paper is to apply this method to
other particular cases of confining geometry including semi-confined sys-
tems and also to systems in three dimensions, for which conformal field
theory predictions do not apply. All the systems we consider in this paper
are confined with boundaries on which Dirichlet boundary conditions are
imposed on the microscopic electric potential. The case of Coulomb sys-
tems confined in geometries without boundaries, for instance on the sur-
face of a sphere, will be considered in a future publication.(?

The second purpose of this paper has to do with the fact that, from
a more general point of view, it is possible to define a spectral function
for the Laplacian, the heat kernel, that turns out to have an asymptotic
behavior for small argument which is independent of the explicit form of
the eigenvalues.?>2» Making use of these results, it is possible to show
that the spectrum of the Laplace operator calculated on a given mani-
fold endowed with a metric, contains geometrical information about the
manifold itself. In this paper we use those ideas to obtain the large-size
expansion of the grand potential for Coulomb systems confined in arbi-
trary geometries. Our results for the particular cases agree with the pre-
dictions of this general formalism.

This paper is organized as follows. In Section 2 we summarize a
few results of our previous paper®! concerning the calculation of the
grand potential for Coulomb systems in the Debye—Hiickel regime in given
confining geometries. In particular, we briefly describe how the grand
potential can be obtained in terms of an infinite product of functions of
the eigenvalues of the Laplace operator. In Sections 3 and 4 we apply the
general method from ref. 21 reviewed in Section 2. In section 3 we apply
the method to some particular examples of fully-confined and semi-con-
fined systems in two and three dimensions. In Section 4 we consider the
general case of fully-confined systems in an arbitrary geometry. We relate
the grand potential of the system to the zeta regularization of the determi-
nant of the Laplacian. By using the known results?3-2% for the asymptotic
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expansion of the heat kernel we find in general the finite-size expansion of
the grand potential and, for two-dimensional systems, we confirm the exis-
tence of the predicted universal finite-size expansion. At the end of that
section we present an illustration of this latter method by considering the
case of a Coulomb system confined in a large square, and we recover a
finite-size correction predicted by conformal field theory. Sections 3 and 4
are mostly independent and the reader not interested in the examples of
Section 3 can proceed directly to the general treatment exposed in Section
4. In Section 5 we present a summary and gather some conclusions.

2. SUMMARY OF PREVIOUS RESULTS

Let us start by describing the model under consideration. Our sys-
tem is a multi-component Coulomb gas living in d dimensions and com-
posed of s species of charged particles « =1,...,s each of which have
N, particles of charge go. The system is confined in a domain of volume
V with Dirichlet boundary conditions for the microscopic electric poten-
tial. Although this model is widely used to describe Coulomb systems con-
fined by conducting boundaries, it should be noted that it neglects the
thermal fluctuations of the electric potential inside the conductor. Thus
it is not a fully satisfactory model for real systems. However, the ther-
modynamic quantities, densities and correlations, computed for this model
can be easily related to the ones of a more realistic model which takes
into account the fluctuations of the electric potential inside the conduct-
ing boundaries.(>-¢)

We shall describe this system using classical (i.e. non-quantum) sta-
tistical mechanics in the grand canonical ensemble. The average densities
of the particles n, are therefore controlled by the fugacities ¢,. We shall
impose the pseudo-neutrality condition

ané'a:() (2.1)

which implies that, at the mean field level, the system is neutral and
there is no potential difference between the system and the boundaries. In
Appendix B of ref. 21 we explain what happens in the more general case
when the condition (2.1) is not satisfied.

The interaction potential between two unit charges located at r and r/
is given by the Coulomb potential v(r,r’) which is the solution of Poisson
equation

Av(r,Y)=—s580 —1) (2.2)
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satisfying Dirichlet boundary conditions and where sq = 27%42/T'(d/2),
that is in two dimensions sp =27 and for three-dimensional systems s3 =
47r. For non-confined systems the Coulomb potential reads

1

T if d=3

v )= Ir=r] " (2.3)
b i a=2

where L is an arbitrary length scale which fixes the zero of the Coulomb
potential in two dimensions. For the confined system under consideration
the explicit form of the Coulomb potential must be modified in order to
satisfy the Dirichlet boundary conditions.

As explained in ref. 21 (see also ref. 6), the potential energy of the
system can be written as

Ny NV s Ny
1 1
H = 5;}/ 21 E I/QaCIyU(l'a,i,l‘y,,/)-l—z E 1 E 1615 [U(ra,hra,i)_Uo(ra,isra,i)]
) 1=1j]= a=l1=

No NV

s Na
D) D) R HRSIEEY ) 3 IR (2.4)

a,y i=1j=1 a=li=1

In the first line, the prime in the first summation means that the case when
o=y and i =j must be omitted. The first term is the usual inter-particle
energy between pairs. The second term is the Coulomb energy of a particle
and the polarization surface charge density that the particle has induced in
the boundaries of the system.

In ref. 21 we performed the sine-Gordon transformation®® on the
grand canonical partition function E of the system. Then we expanded the
action around the mean field solution to the quadratic order in the field.
This is valid in the Debye-Hiickel regime. Then the remaining functional
integral can be performed easily since it is Gaussian. The result is a cer-
tain determinant involving the Laplacian which we put in the form

K2 2 —1/2
E= (1‘[ (1 - r) ]‘[e&) e Vi (2.5)
m m n

where k1= (X", saa ,qu)il/ 2 equals the Debye length in this regime, A,

denotes the Laplacian eigenvalues satisfying the Dirichlet boundary condi-
tions and A = —K?, KeR¢, refers to the (continuum) eigenvalues of the
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Laplacian in the non-confined case. These come from the “subtraction” of
the self-energy term v%(r,r) in Eq. (2.4).

Each infinite product in (2.5) diverges separately. Indeed they are
ultraviolet divergent for large values of |A,,| and |)\2|. However, when they
are put together as in (2.5), the divergences cancel (at least for the bulk
properties of the system). In three dimensions we can find immediately a
well defined expression for the grand potential from Q= —kpTInE. In
two dimensions, the situation is a bit more involved since certain infra-
red divergence appear in the second product and it must be regularized by
introducing a lower cutoff. In ref. 21 we explained how to deal with this
case and we found the value of this cutoff explicitly in terms of the con-
stant L which fixes the zero of the Coulomb potential, which needs to be
supposed to be large. This cutoff was found to be given by ki, =2¢"C/L
where C is the Euler constant. From ref. 21, we recall that for a non-con-
fined system Eq. (2.5) gives for the bulk grand potential

B k2 kL

7_5[_111_—“ ] Yo eD) 2.6)
Q 3

% _ _1"2_n_§ o (D) .7)

in two and three dimensions respectively. These expressions agree with
results by the usual formulation of the Debye—Hiickel theory.(?6-2%)

3. SOLVED EXAMPLES
3.1. Systems in Two Dimensions

Here we consider some examples of confined two-dimensional systems
in the Debye—Hiickel limit. Let us mention that for the unconfined two-
component plasma the bulk thermodynamics in the whole stability regime
are known.(?”

3.1.1. The Disk and the Annulus

In ref. 21 using Eq. (2.5) we computed the grand potential of a two-
dimensional Coulomb system confined in a disk and in an annulus, and
we confirmed that its finite-size expansion is of the form

B =B+ pyB+ 2 z In(cR) +0(1) 3.1)
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with Q; given by Eq. (2.6) and B is the length of the boundary. The sur-
face (perimeter) tension is

y=—kgTk/8 (3.2)

We notice the existence of the universal finite-size correction (x/6)In R
with the Euler characteristic x =1 for the disk and y =0 for the annulus.

In the following section we consider an additional example of confin-
ing geometry in two dimensions.

3.1.2. Space Between Two Infinite Lines: The Slab
in Two Dimensions

The method outlined in Section 2 can be used to study semi-con-
fined systems. In this section we consider the case of such a system in two
dimensions. The geometry consists of two infinite parallel lines spaced by
a distance W and the Coulomb systems is confined in between these two
lines. We assume Dirichlet boundary conditions for the electric potential.
Let us assume that the lines are in the direction of the y-axis and the
x-axis is perpendicular to the lines. If we write the Laplacian eigenvalues
as A= —k)% —kﬁ, these take discrete values only in the k,-direction. The
eigenfunctions can be written as W(x, y) oc ¢! ®¥) sin(k,x), satisfying the
boundary conditions W (0, y)=0 and ¥ (W, y) =0, which imply k, =nw/W
with n a positive, non-zero, integer. In the direction of the y-axis there
is no confinement therefore k, € R. Then, the eigenvalues of the Laplace
operator are given by Ay x, =— (nw/ W)2 —k%, forn=1, 2, ..., and k, eR.
Introducing the explicit form of the eigenvalues in (2.5) we have the grand
potential expressed as

1 K
2(2ﬂ)/ 1_[ +k2 dky—Fzzk:)L—g—Z“:V;a
(3.3)

where [ is the length of the system in the y-direction. The second term

in (3.3) involves the spectrum for a non-conﬁned system, A0 = —K2 with

K eR2. It can be written as %Zk S=—2 Vi ka‘”‘ 4K where V =IW is the
)“k

4 ‘min
“volume” (area) of the system between a portion of length [/ of the confin-
ing lines. The lower limit for this integral is kpj, =2e¢~€/L as mentioned in
Section 2 and explained in ref. 21. Also, as explained earlier, this integral
is ultraviolet divergent therefore we introduced an ultraviolet cutoff Kpax.
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In the first term of Eq. (3.3) the infinite product converges to a known
expression®?) giving

kmax ky smh K2+k2) Wik2 [Kmax gK
dk, — 4
] / /k Z fo

y
fic2 +k2 sinh (k, W) 4 K

min

(3.4)

where we also introduced an ultraviolet cutoff for the first integral kpax-
Both cutoffs kpmax and Kpax should be proportional and their exact rela-
tion can be found by requiring that in the limit W — oo we recover the
known bulk value of the grand potential (2.6). Performing some of the
integrals in (3.4) we find that the grand potential per unit length w=/1
is given by

4 Kinax dr | 2

e —2W . [k2+k2 dkv
- — R 1 1 — y —
it ( ‘ 2m

KK2W . 2km; K2W 1 kL
,30) = In max + |:——11'1 26__Ci| —WZ;O[ (35)
a

where all terms that vanish when kpy,x — o0 have been omitted. Therefore
to recover the known value (2.6) of the bulk grand potential in the limit
W — oo the ultraviolet cutoffs should be related by Kpax = 2kmax. Using
these cutoffs we finally find the grand potential and its finite-size expan-
sion

24W

= Bwp +2By + W + O(e_z"W) (3.6b)

*© - 2412\ dky
ﬂa)_,Ba)b+2/8y+—+ In(1—e 2"V ) 2 (369
2
T

where wp, =Q,/1 with the bulk grand potential €2, given by Eq. (2.6). The
surface tension y is given by Eq. (3.2), which is the same surface ten-
sion that we found in the case of the disk and the annulus in our pre-
vious work®D) as expected. Finally, we also found the universal finite-size
correction for the case of the slab in two dimensions, which turns out to
be 7/(24W)=¢(2)/(47r W) in accordance with the general prediction from
ref. 1: T(d/2)¢(d)/2%n?2W4=1) for d =2 as expected.
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3.2. Systems in Three Dimensions

In this section we consider some examples of three-dimensional Cou-
lomb systems first confined in a slab geometry then inside a ball and
inside a spherical thick shell.

3.2.1. Space Between Two Infinite Planes: The Slab in Three
Dimensions

We begin the study of particular examples of three-dimensional sys-
tems by considering a system confined in the space between two infi-
nite parallel planes, separated by a distance W. Taking the x-coordinate
along the direction normal to the planes we find that the eigenfunctions
are W(r) oce!®L T gin(k,x), where k| -r) = yky + zk;, and satisfying the
boundary conditions W (0, y,z)=0=W¥ (W, y, z). Thus, the eigenvalues are
given by ky=nm/W, with n=1,2,..., and ky, €R and k; €R. Using (2.5)
and the explicit form of the eigenvalues we have

pa=; s [in 1‘[<1+_n )&sz_zm

W
(3.7)

where A represents the area of the planes. The second term coming from
the subtraction of the self-energy is now

1 K2 1 2V Kmax g2k K2V
1 _=___4n/ Lok __ Tk (3.8)
2 ; Woo2e T R T e ™

where V = AW 1is the volume of the system. As in the two-dimensional
example we introduced an ultraviolet cutoff Kpax.

Similarly to the two-dimensional slab, the infinite product in the first
term converges toG?

inh ( W 2+k2>
ﬁ <1 s ) kT ( o (3.9)
( 2 m sinh(k W)

with k; =1k, |. The remaining integral over k; is ultraviolet divergent and
must be cutoff to a maximum value kpax for k. As kmax — 00, the ultra-
violet cutoffs should be related by kmax =2Kmax/7 in order to recover the
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known value of the bulk grand potential (2.7) in the limit W — oco. Then,
the grand potential is finally given by

B B t(3 k[ W
— = — 42 _ In(l — uK
A A +'By+l6nW2+4n/1 uln(—e ) du
(3.10a)
BQ £(3) _
= Tb+zﬁy+m+o<e AWy (3.10b)

with the bulk grand potential @, given by Eq. (2.7) and the surface ten-
sion y given by

2
,ByzK—|:ln £ —l} S P (3.11)

kmax 2 kmax:—>00 16 kmax

Note that when we take the limit kpax — 00 the surface tension diverges
with the cutoff as —[«?/(16)]Inkmax. This divergence in the surface ten-
sion can be understood if we note that the particles tend to move to the
frontiers because of the ideal conductor character of the boundaries. This
is easy to see from a physical argument: the ideal conductor boundaries
condition is equivalent to introducing an image charge of opposite sign
at the other side of the boundary for each particle in the system. Parti-
cles near the boundary “feel” an attraction to the boundary due to their
proximity with their corresponding images. Near a boundary, the density
of the species « at a distance X from the boundary will behave, in this low
coupling approximation, as the linearized Boltzmann factor of the parti-
cle-image interaction 14 B¢2/(4X). At large distances this interaction is
screened, but at short distances it remains non-integrable. Since the sur-
face tension can be obtained as an integral of the density profile,®V) this
surface tension will be infinite. Imposing a short-distance cutoff D for the
minimum approach of the particles to the wall, will give a surface tension
which diverges as In D. Our ultraviolet cutoff kpax is proportional to 1/D.
For details see ref. 6. Notice that, on the other hand, for a two-dimen-
sional system the surface tension does not diverge with the cutoff (see
ref. 21 and Section 3.1.2). In two dimensions the particle-image interac-
tion is [qg /2] In(2X/L) and this expression is integrable at short-distances.
This explains why the surface tension is finite and cutoff independent for
two-dimensional systems although the particles are strongly attracted to
the boundaries, contrary to the situation in three dimensions where the
surface tension diverges with the cutoff.
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Returning to Eq. (3.10b) we found a finite-size correction depending
on W~2. This agree with the universal finite-size correction for a slab in
d-dimensions, Eq. (1.1), for d =3 predicted in ref. 1.

3.2.2. Coulomb System Inside a Ball

We continue the study of finite-size Coulomb systems by calculat-
ing the grand potential for a three-dimensional Coulomb system con-
fined inside a spherical domain. The eigenvalue problem for the Laplace
operator in this case is easily solved. The eigenfunctions are ¥ (r, 0, ¢) =
V@2 I (VAP Y, (0, ¢) where 41, are the modified Bessel
functions of half integer order and Y, are the spherical harmonics.
The eigenvalues A are determined from the Dirichlet boundary condition
W (R, 0, 9)=0 where R is the radius of the sphere. Thus, the eigenvalues
are the roots of the equation 11+1/2(«/_R) 0. Let us call vl+1/2,, the
zeros of Ij1/,. Then the eigenvalues are given by kk_v, 12 /R? for [ =
0,1,2,... and n=1,2,... Also for each value of [/ and n, tfle correspond-
ing eigenvalue is degenerated 21 + 1 times. Then, the expression for the
grand potential obtained from (2.5) takes the form

1 00 00 22 21+1 1 K2
pa=51n H(H(l—vz )) +§Zfe‘2"¢a
=0 \n=1 1+1/2,n k k o

(3.12)

where the indices n and /4 1/2 denote the root and the order of the mod-
ified Bessel function I;y1,, respectively and z=«R. The infinite product
over the index n can be performed exactly®?

o0 2 1+1/2
Z 3\ /2
I (1 . ):r (1+3) () mew Gy
Vir1/2.n <

n=1

The remaining product over the index / diverges and we must regularize it
by introducing an upper cutoff N on /.
The second term coming from the subtraction of the self-energy is

K2V Kmax g2qk &2
4 -~ Rk 3.14
2 Z AO 2 Q)3 /0 k2 3p M (3.14)

where V = %nR3 is the volume of the system. As in the previous exam-
ples we introduced an ultraviolet cutoff Kp,x which must be proportional
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to N in order to cancel the divergences. The exact relation between Kpax
and N is found by the requirement that the bulk value of the grand poten-
tial (2.7) is recovered in the limit R — oo.

To find the finite-size expansion of the grand potential we make use
of the Debye uniform asymptotic expansion®? for the Bessel functions,
valid for large values of the argument,

! ! 3u— 5u’ 1
= nen (2 2) s 23 (1)

24y 2242
(3.15)
with
1/2 . —1(V v
N, z)=(z>+1? —vsinh <—); U=—— (3.16)
( ) z (z2+v2)l/2

together with the Euler-McLaurin summation formula to transform the
summation into an integral: YN () = fo' f()dl + L[FO)+ F(N)] +
1—12[ fI(N)—f' (0)] + ---, and the Stirling asymptotic expansion for the
Gamma function. Then, in the limit N — oo and z — oo, we find

R 2R2 R
ﬂsz=ﬂ9bulk+(1+2ln§>K8 +%+0(R°>+0(N°) (3.17)

where

3

K 32N «?
,BQbulk=|:—E+EE—meax—Z§aj| 14 (3.18)

This value of the bulk grand potential should be equal to the one given
by Eq. (2.7) therefore Kpax = (37/4)N/R. The ultraviolet cutoff Kpax
is indeed proportional to the cutoff N and with this relation between
the cutoffs the bulk divergences of the first and second terms in the
r.h.s. of (3.12) cancel each other. Reporting the result for Kpax in (3.18)
we find

2 2

3 4m 4 K K KR s K
BR=|-—= = lu| R+ e T Iy J AR R +o(R)

(3.19)
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The first term in the r.h.s. of Eq. (3.19) is the bulk grand potential in
three dimensions. In the second term, the expression in parenthesis gives
the surface tension for the system and the third term is a (non-universal)
curvature contribution. Notice again that the surface tension diverges as
—[KZ/(1671’)]111 Kmax with the cutoff.

3.2.3. Spherical Shell

We consider now the case of a three-dimensional Coulomb sys-
tem confined inside a spherical shell. Let ¢ and b be the inner and
outer radii of the shell respectively. As in the previous example, the
eigenfunctions W(r, 6, ¢) are separable in a radial and an angular part.
The eigenfunctions of the Laplacian for this geometry are W (r, 6, ) =
[A /er\’—l/zll+1/2(ﬁr)+3 /zrf_l/zKlH/Z(\/X”)] Ym0, ). The eigenvalues
are determined by the boundary conditions W (a, 0, ¢) = V(b,0, ¢) =0,
that is Ali412(v2a) + BK 11 2(v/Aa) =0= Al ;41 2(V/Ab) + BK 11 /2(v/Ab).
These two equations can be considered as a linear system of equations for
the coefficients A and B. It has a non-trivial solution if and only if

L1 2(Vaa) K112 (VAb) = Ii12(VAa) K141 /2 (VAD) =0 (3.20)

The roots of this equation give the eigenvalues. Let 9%, be the n-th root of
li412(za)Ki12(zb) — 1 2(za)Ki1/2(zb) =0 for 1=0,1,2,... Then we
have Ak:ﬁl%n. Each eigenvalue is (2] + 1)-degenerated. Then the expression
for the grand potential takes the form

1 g K2 2 1 K2

pe=smn | [T[T{1-5+ +352_ 52 Ve (32D
[=0n=1 In k k o

The infinite product over the index n can be performed explicitly by using

a method explained in refs. 33, 12, 21. Let us consider the entire function

/ K b)—1 K b
A =QI+1) 1+1/2(za) lt],/i(j/g l:ll/jl(/zza) 1+1/2(zb)
(&)= ()]

which has the following properties: fi(z) = fi(—z), fi(0)=1, f/(0)=0 and
its zeros are v; ,. Therefore it admits an expansion as a Weierstrass infinite
product

(3.22)

00 2
fi@=T] (1—19%) (3.23)

n=1 I,n
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Then the product we need to compute is simply f;(x). The grand potential
then takes the form

1Y K2 33
ﬁ9=5;<zz+1)1nﬁ<x>—§(b —a )Kmax—;vca (3.24)

where we introduced the now familiar cutoffs N for the sum and Kpax for
the integral. As in all the previous examples these cutoffs are proportional
and their exact relation is found by requiring that in the limit of a large
system we recover the known bulk value (2.7) of the grand potential.

For the calculation of the finite-size expansion of the grand poten-
tial, notice first that the contribution of K;(xb)I;(ka) is of order e~ (¢—@)k
that is to say exponentially smaller than the contribution of the term
I;(kb)K;(ka) and as a consequence we can ignore it. To find the value
of the remaining summation over the index /, we use the approximations
of Kjy1/2(ka) and I;41/2(kb) for large values of the argument, which can
be obtained from the Debye approximation for the modified Bessel func-
tions.® Then we apply the Euler-McLaurin summation formula and take
the limits N — oo, b— 00, a — 00 and b —a — oo with a/b <1 fixed. We
finally obtain

1
2= P + BQsurtace + 3 b—a)k+0@@")+0o®m" (3.25)

where €, is given by Eq. (2.7) and

1 ak 1 bk
BLsurface = g (2111 F - 3) Clsz + g <2ln W + 1) szz (3.26)

This time the ultraviolet cutoffs are related by

37 N 1—(a?/b?)

4 b 1—(a3/b3) G.27)

Kmax =

Some additional comments are in order. The divergence in the surface
tension, familiar to us at this point, is also present in this case. In the limit
Kmax — 00 we have BQqyrface — —47 (b +4a?) [k%/167]In(Kmax/k) which
allows us to define a surface tension y similar to the one of the previous
other three-dimensional cases, given in Eq. (3.11).

The slightly different expressions for the surface tension obtained in
(3.11), (3.19) and (3.26) originate only from different ways of implement-
ing the cutoff and they all agree in the limit Kpax — oo.
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We find again a curvature correction to the grand which is not uni-
versal (it depends on the Debye length «~'). This time it is given by
kpTk(b—a)/3. This clearly suggests that this correction is really related to
the curvature of the boundary and probably to the curvature of the space
itself. This is indeed the case as we will show it for any general geometry
in the following section.

4. GRAND POTENTIAL FOR ARBITRARY CONFINING GEOMETRIES

Up to now we have been capable to find the explicit form of the
grand potential for systems in specified confining geometries. Our calcula-
tions of last section always involve the resolution of the Laplacian eigen-
value problem for each specific geometry. From a more general point of
view it is possible to define functions of the spectrum of the Laplacian
that admit asymptotic expansions, that turn out to have some properties
that are independent of the explicit form of the eigenvalues. Also in some
cases these functions are related to some invariants of the confining mani-
fold, for example in two dimensions to the Euler characteristic of the man-
ifold. In this section we make use of those ideas to find the finite-size
expansion of the grand potential in the case when the spectrum of the
Laplacian in the confining geometry is not known explicitly.

4.1. Spectral Functions of the Laplacian

In this section we review some spectral functions that will be use-
ful for our analysis. Let M, be a Riemannian manifold endowed with a
certain metric g and with boundary M, and A the Laplace operator
defined on M,. The spectrum of M, is the set? {0>xg=A;>--- ] —o0}
of eigenvalues of A, that satisfy AV =AW, where ¥ are the eigenfunctions
of A. In order to determine the spectrum, these functions must satisfy cer-
tain boundary conditions on 9.M, which we impose to be of the Dirichlet
type, that is ¥ =0 on dM,. The first spectral function we are interested
in, is the heat kernel defined as

a(t) =Ze’)"‘ , (4.1)
k=0

which is convergent for fe(r) > 0. It is known that the heat kernel admits
an asymptotic expansion for t — 0 of the form

2For the Dirichlet boundary conditions considered here all eigenvalues 4, #0. This is neces-
sary to define properly the Fredholm determinant considered below (Eq. (4.10)).
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o
O~ ci,tin. 4.2)
n=0

Here {i,} is a certain increasing sequence of real numbers and iy <0. The
exponent i is particularly important because c; ¢ is the divergent leading
term in the series. According to the famous Weyl estimate®* for the La-
placian ig=—d/2 where d is the dimension of the manifold and (47)%?¢;,
is the volume of the manifold. Following ref. 35 we define the order of the
sequence of the eigenvalues as = —ip=d/2. For a manifold M, with a
smooth boundary, some of the terms in the small-# expansion of the heat

kernel have been found by Kac and others(?3:24)
Vamt t
GriPe) =V — 4” B+ (2C+D)+o(t*) 4.3)
where

V = the volume of M, 4.4)
B = the surface area of I M, 4.5)
C = the curvatura integra = / K (4.6)

My
D = the integrated mean curvature = / J 4.7

IM,

where K is the scalar curvature at a point inside the domain M, and J is
the mean curvature at a point in the boundary 9 M,. If we choose a met-
ric g in which locally the first coordinate is perpendicular to the boundary

and outward pointing to it then the mean curvature J can be computed
(24)3
as

J=0i[g"" detgly/gii/ detg (4.8)
Notice that in two dimensions the well-known Gauss—Bonnet theorem(*®)
states that 2C + D =4m x where x is the Euler characteristic of the mani-
fold. Therefore in two dimensions the heat kernel expansion reads

\%4 B
O@) = — — ——+ X 4 ot112) (4.9)
4mt 8wt 6
3Notice that we use here the convention of outward pointing normal vectors to the bound-
ary. This is the opposite convention as the one in ref. 24: our J is minus the J of ref. 24.
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The second spectral function we are interested in, is the Fredholm
determinant defined as [[o, <1 — %) which is precisely the infinite prod-
uct involved in the calculation of the grand potential of the Coulomb sys-
tem from Eq. (2.5). Unfortunately this infinite product only converges for
sequences of order u < 1, and therefore it diverges for the cases we are
interested in, when u=1 (two dimensions) and u=3/2 (three dimensions).
For the cases u > 1 a Weierstrass canonical regularization of the Fredholm
determinant reads®>

> a a a? alt
F(a)=1_[<1—k—>exp e (4.10)
Pl k k20 (A}

which is valid for u > 1, where [u] is the integer part of u. The exponential
term in (4.10) is introduced in order to make the infinite product conver-
gent when the order of the sequence is larger than one. We are interested
in two- and three-dimensional manifolds when u equals 1 or 3/2 respec-
tively. In both cases expression (4.10) reduces to

o0

r@=J] (1—%) e/ 4.11)

k=0

Although, strictly speaking, the product (4.10) is only defined for u>1 we
will still use it in the two-dimensional case when u=1. We will see that
using the regularization (4.11) for the ultraviolet divergence of the Fred-
holm determinant in the case u =1 introduces some infrared divergences.
However, as we will show in detail later, these infrared divergences can be
dealt in a similar way as it was done for the two-dimensional examples of
ref. 21.
We finally introduce the generalized zeta function defined as

o]

Z(s,a)=Y (a—x)"" (4.12a)
k=0
_ L > A —at ,s—1
= F(s)/o O)e " dr (4.12b)

The first expression for the generalized zeta function defined as a series is
convergent for any s such that Re(s) > u and for any a such that a > A.
The second expression (4.12b), where the zeta function is expressed as a
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Mellin transform of the heat kernel, actually allows an analytic contin-
uation of Z(s,a) for Ne(s) < u if the heat kernel admits a full asymp-
totic expansion for t — 0 of the form (4.2) as explained in ref. 35. Note
that Z(s,0)=Z(s), where Z(s) =Y ;= (—ix)~* is the zeta function of the
sequence {A¢}. The analytic continuation of the zeta function has the fol-
lowing properties®® which we will need shortly. Z(s) is meromorphic in
the whole complex s plane and has poles at s =—i, with residue

Res Z(—i,) =

ci,
Fi) (4.13)

In particular from Eq. (4.3) we deduce that the first pole is encountered
at s = —igp=pm=d/2 and has residue V/[I'(d/2)(4r)%/?]. Notice that this
residue is independent of the shape of the manifold: it only depends on
its total volume V. Also the negative or zero integers s = —n are regular
points of Z(s) and we have>

Z(-n)=(=D"n'c_, (4.14)

The generalized zeta function provides another regularization for the
Fredholm determinant of the Laplacian known as the zeta regularization.
Indeed, differentiating (4.12a) under the sum with respect to the variable
s and putting s =0 afterwards (a procedure which is not legal since the
expression (4.12a) is convergent only for fe(s) > u) formally yields

_lnl_[(l——) (4.15)

Strictly speaking this Eq. (4.15) is incorrect and it should be only under-
stood as a formal relation to justify the word “determinant” in the name
zeta regularization of the determinant of the Laplacian since the infinite
product involved in the r.h.s. is divergent. Notice however the Lh.s. of
Eq. (4.15) is well defined once the analytic continuation of Z(s, a) is done
with the aid of relation (4.12b).

The zeta regularization of the Laplacian determinant and the Fred-
holm determinant (4.11) are closely related. In ref. 35 a general relation
between them is found for any sequence of numbers of arbitrary order w.
In our particular case this relation reads

T _ 4
SZO_ln []‘[ (1 /\k) e k} +aFP[Z(1)]

(4.16)

0Z(s,0)
as

BZ(S a)

s=0

0Z(s,0)
as

0Z(s,a)
s=0 ds
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where FP[Z(1)] denotes the finite part of Z at 1, defined as usual by

Z(s) if s is not a pole of Z

FP[Z(s)]= FP[Z(5)]= lirr%) [Z(s to)— ResZ(s) :|
E—> £

if s is a pole of Z
(4.17)

4.2. The Connection with the Grand Potential
of the Coulomb Systems

As the reader probably noticed, the Fredholm determinant is quite
similar to the infinite product that appears in the expression for the grand
canonical partition function (2.5) for Coulomb systems in the Debye—
Hiickel approximation. Our goal in this section is to relate this kind of
products with the geometrical information that can be extracted from the
asymptotic expansion of the heat kernel.

4.2.1. The Bulk Case

First let us mention some points concerning the case of an unconfined
system. In this case the eigenvalues 1, :)»2 and the expression (2.5) for the
grand canonical partition function involves precisely the Fredholm deter-
minant (4.11) with @ =«2. The exponential terms ¢**/*, that come from
the subtraction of the self-energy, properly regularize the infinite product
[1.01— («2/An)]. The final result for the grand potential (2.6) and (2.7) is
finite and does not depend on any ultraviolet cutoff.

As a side note let us mention that if we were interested in the for-
mulation of Debye-Hiickel theory for a system living in four or more
dimensions, the expression (2.5) for the bulk grand partition function
would not be convergent and it would require the introduction of an ultra-
violet cutoff. This is because in dimension d >4 the index of the sequence
of the Laplacian eigenvalues would be pu =d/2 > 2. For this case the
correct regularization of the Fredholm determinant would require an addi-
tional exponential term as shown in Eq. (4.10). Physically this means that
the bulk properties of a Coulomb system in dimension equal or greater
than four, in the Debye—Hiickel regime, can only be defined for a system
of charged hard spheres or any other charged particles with a short-range
potential that regularizes the singularity of the Coulomb potential. The
inverse of the radius of the particles is equivalent to the ultraviolet cut-
off in our formulation. The bulk thermodynamic properties would depend
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on the radius of the particles, and would diverge if one takes this radius
to zero. This can be contrasted with the two- and three-dimensional cases
where one can build a Debye—Hiickel theory for which the bulk properties
have a well defined limit for point-like particles.

As a complement on this remark let us remind the reader that for
a three-dimensional system the exact thermodynamic properties, beyond
the Debye-Hiickel approximation, are not well defined for a system of
point-like particles due to the collapse of particles of opposite sign. In two
dimensions this collapse problem is less strong: if the thermal energy of
the particles is high enough a system of point particles is well defined. On
the other hand, the Debye-Hiickel approximation is less sensitive to this
collapse problem: for two- and three-dimensional systems the bulk prop-
erties are well defined for point particles. However as we have seen in the
examples, in the three-dimensional case the surface properties are sensi-
tive to the collapse problem and a proper definition of these require the
introduction of a short-distance cutoff. For dimensions equal or greater
than four the collapse problem appears for the bulk properties, even in the
Debye—Hiickel approximation.

4.2.2. Zeta Regularized Grand Potential

Now let us consider a confined Coulomb system in the finite manifold
Mg. Let R be the characteristic size of the manifold. For instance one can
define R as V!/4 where V is the volume of the manifold. We are interested
in the large-R expansion of the grand potential of the system, which can
be obtained from Eq. (2.5).

In this section, we will study an auxiliary quantity, Q*, defined by

*_1 / ! 2
8O _E[Z 0,0) — Z/(0, )] (4.18)

which will be related to the grand potential later. The prime in Eq. (4.18)
indicates differentiation with respect to the first variable (s) of the zeta
function. For obvious reasons (see Eqs. (4.15) and (2.5)) we will call this
quantity the zeta regularized grand potential.

As we will show below, the large-R expansion of the zeta regularized
grand potential is related to the small-r expansion of the heat kernel (4.3).
To see this, let us consider a system where all lengths have been rescaled
by a factor 1/R: it is a Coulomb system confined in a manifold of fixed
volume equal to 1 but with the same shape as the original system. Let
Z1(s,a) be the generalized zeta function for the spectrum of the Laplace
operator for such a manifold and ®(¢) its heat kernel. The subscript 1
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refers to a system confined in a volume 1. For the original system of char-
acteristic size R we will eventually use the subscript R in the spectral func-
tions Zg(s,a) and Og(1).

The cigenvalues of the system of size R are the same as those of
the system of size 1 multiplied by a factor R—2. Then we have Og(r) =
©1 (R72t) and Zg(s,a)=R>*Zi(s,aR?). From this we see that an expan-
sion of the heat kernel ®g for large-R and fixed argument is the same as
an expansion of the heat kernel ®; for small argument.

We have

e 1[0 o 0 [ 25 2 p2
PR = [5 [R Zl(S,O):IS:O_a [R Zi(s, kR )]S:O} (4.19)

Z/(0,k>R?) N Z1(0,0)

= Z100,0)InR —Z;(0,k*R*>)InR — 5 5

where the prime denotes differentiation with respect to the first argument
s. The last term is a constant, so we will eventually drop it in the large-R
expansion.

From Eq. (4.12b) we can see that a small-argument ¢ expansion of the
heat kernel ®(¢) is equivalent to a large-argument a expansion of the zeta
function Z(s,a). Then, using the small-argument expansion of the heat
kerne31 )(4.2) into Eq. (4.12b), one can obtain in general the large-R expan-
sion®>

Z10, kR ~ > e, D) (R
in¢Z~U{0}

[1] m _ 2p2m
> e |:1n(KR)2 _ Zrl:| ("% (4.20)
m=0 :

r=1

In this equation the coefficients ¢;, are those of the heat kernel expansion
(4.2) for a system of size 1 and we use the convention that if m is not any
of the exponents i, of Eq. (4.2) then ¢, =0. The first sum runs over all
indexes i, that are not negative or zero integers. Using this equation and
Z1(0,a) = co —ac_1® in (4.19) yield the large-R expansion of the zeta
regularized grand potential

1 . 1
pR ~ 5 > Tl R) 2 —k?R%_ [lnx—ﬂ

in @2~ U{0}

1
+eolnGeR) +52'(0.0) (4.21)
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Now, we specialize this result for two and three dimensions. In two dimen-
sions, from Eq. (4.9) we read c¢_; =V /(4n), c_1/2=—1§/(8ﬁ) and ¢y =
x/6, where V=V/R? and B=B/R denote the volume (area) and perim-
eter of the manifold of characteristic size 1. Then we have

2R? (1 - kR
ﬁQ§D=K4—n(E—ln/c)V—%B—l-%ln(KR)—i—O(l) 4.22)

In three dimensions, from Eq. (4.3) we have c_3,=V/(4n)¥?, c_1 =
—B/(167) and c_1/»=(2C + D)/[6(47)3/?] with V the volume of the sys-
tem of size 1, B the area of the boundary of system of size 1 and C and
D the curvatura integra and integrated mean curvature for the system of
size 1. Replacing this into Eq. (4.21) we have

K3R3 - n K2R?
127 167

. 17~ kR _~ =~
pe, = [inc—3 | B+ oec4D)rom) @2y

4.2.3. Connection Between the Physical Grand Potential
and the Zeta Regularized Grand Potential

The excess grand potential Q¢ of the Coulomb system is obtained
from Eq. (2.5) as

,Bsze"c—lln ]_[ 1—ﬁ ]—Ie% (4.24)
) . o |1 ’ '

This expression involves a product very similar to the Fredholm determi-
nant (4.11) but it only coincides with it for the bulk case. In general for a
confined system they are different. However, we can formally make a rela-
tion to the Fredholm determinant £ by writing

1 2 2 nﬁ_ mﬁ
'BQexczzln(n[<l_s_)emj|ez 20 z Am)

eS|y Loy ! (4.25)
T Ty, T A '
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Then we make the connection with the zeta regularized grand potential Q*
defined in the previous section using Eq. (4.16), so finally

oo gor — " Bprz(1) 4 ! ! 4.26
B =8 Y [()]+7;__)\n1_n__)‘2 (4.26)

The last two sums are divergent when considered separately. In principle,
they should be cutoff in a similar way as in the examples. The proper
treatment of these sums should be worked-out separately for each spatial
dimension d =2 and 3.

4.2.4. Two-dimensional Case

In two dimensions the divergences of the sums involved in Eq. (4.26)
can be dealt in an elegant way by means of the zeta function. The zeta
function has a pole at s =1. Recalling Eq. (4.13) and the fact that the res-
idue of the zeta function Z at s =1 for our confined system is equal to the
residue of Z° at s=1 for an unconfined system, we can identify the sum-
mations in Eq. (4.26) with

1 1 .
o - Tog-jnfro-20] e

Then using the fact that both zeta functions Z and Z° have the same res-
idue at s =1 we find that Eq. (4.26) becomes

2
BSTs =B, — 5 FPLZ°(1)] (4.28)

Now the zeta function for an unconfined system reads

0\ 1 / d*k ks
? (S)_;(—/\,?)S_V r2 (2m)% k% *.29)

However this zeta function cannot be properly defined: if Ne(s) <1 the
integral is ultraviolet divergent and if Me(s) > 1 it is infrared divergent.
Depending on the sign of Re(s) — 1 this zeta function should be regu-
larized with an ultraviolet or infrared cutoff. For our present purposes
we need Z'(s) defined for Me(s) > I, then introducing the infrared cutoff
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kimin=2¢"C /L as in the two-dimensional examples of Section 3 and ref. 21
we have

V k2—2$
Z%(s) = — —min_ (4.30)
4 s—1
Its finite part at s=1 is
v V. 2 €
FP[ZO(I)]z—Elnkminz—Eln 7 (4.31)
Therefore
2 —C
" . K7V 2e
P =Py +—In— (4.32)

Clearly this extra term contributes only to the bulk grand potential.
Finally, inserting this into Eq. (4.22) yields the finite-size expansion

ZR2 /1 L\ ~ kR -
g (- _c_mE ) V- a1 Lnwr)+00) 4.33)
2D 4 6

We have obtained the general finite-size expansion of the grand poten-
tial for arbitrary confining geometry in two dimensions. We recover from
the first term of Eq. (4.33) the bulk grand potential (2.6), from the second
term the surface tension already obtained in the examples y =kpT«/8 and
finally the logarithmic finite-size correction (x/6)In R. This constitutes a
proof of the existence of this universal finite-size correction for Coulomb
systems, in the Debye—Hiickel regime, confined in an arbitrary geometry
with Dirichlet boundary conditions for the electric potential.

4.2.5. Three-dimensional Case

For a three-dimensional system we must proceed differently to eval-
uate the sums in Eq. (4.26) as it was done in the two-dimensional case.
Here we cannot identify the sums with zeta functions because in three
dimensions the definition (4.12a) of the zeta functions expressed as a sum
is only valid for Me(s) > 3/2 and in Eq. (4.26) the sums correspond to
s =1. In the two-dimensional case we did not have this problem because
the validity of (4.12a) if for Me(s)>1 and since the residues of both zeta
functions are equal we could take the limit s — 1+ of the difference of zeta
functions and obtain a finite result. Now, in the three-dimensional case,
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we need the sums for a value s =1<3/2 which is far beyond the validity
of Eq. (4.12a). Also the corresponding analytic continuations of the zeta
functions do not have the same residue at s =1. Indeed the bulk zeta func-
tion Z° does not have a pole at s =1 in the three-dimensional case but
the zeta function Z for the confined system has a pole at s =1 with resi-
due given by Eq. (4.13) which is related to the coefficient ¢_; correspond-
ing to the surface contribution to the grand potential. This suggests that
the difference of the two sums in Eq. (4.26) will not be convergent for the
three-dimensional case as it was in the two-dimensional one and it would
give a divergent surface contribution to the grand potential.

Let us introduce a truncated version of the zeta function evaluated at
s=1,

~ 1
Zeut(A) = __)Lk (4.34)
4] <2

and the corresponding one for the unconfined system

- 1 1% Pk Vo
z% ()= —_— = — =7 4.35
cut( ) Z _)\2 (27_[)3 \/|\k|2<5\, kz 27_[2 ( )

[ Akl <A

Here A > 0 is an ultraviolet cutoff for the eigenvalues. The sums in
Eq. (4.26) are

2 —Lxm - Lo =_lim [Zcut(i) - Zgut(i)] (4.36)

- A—~400

Let us introduce the counting function N(A) which is equal to the number
of eigenvalues A; such that |A;| <X. The truncated zeta function is related
to the counting function by

oA
Zewt(h) = / N dx 4.37)
0 A

with A(1) the derivative (in the sense of the distributions) of A/(1). On
the other hand the derivative of the counting function and the heat kernel
are related by a Laplace transform

o) = / Ooe—“/\//(,\) dx (4.38)
0
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Then, from the asymptotic expansion of the heat kernel (4.2) for  — 0,
we can obtain the first terms of the asymptotic expansion of N'(L) for
A— +00

i €32 s _ si2_ B
NG~ it e to= o il - pe o) @39)

Inserting this into Eq. (4.37) we find the asymptotic behavior of the trun-
cated zeta function for A — oo

> Visiyp B -
Zew(M)=—=212— —Inx 1 4.4
cut(A) 272 67 ni+0(1) ( 0)
Then we have
- 0 = B ~ B
Zcut()\)—Zcut(k):—ﬁlnk—k0(1):—ganmax+0(l) (4.41)

where we have introduced Kmax = A1/? to make the connection with the
examples of Section 3. We see that the divergences are not completely can-
celed now, as it is in the two-dimensional case. There remains an ultravio-
let divergence which contributes to the surface tension (proportional to B
the area of the boundary of the manifold). This is the same kind of diver-
gence that we have found in the three-dimensional examples in Section 3
and it is due to the strong attraction of the particles to their images as
explained earlier.

Finally collecting the results from Egs. (4.23), (4.26), and (4.41), the
finite-size expansion of the grand potential reads

exc KW3R3 . K2R? K o | 5
B = — o V+ = In X + O((Kmax)") | B
max

+ 2R 08+ By +o(R) (4.42)
48

From this very general calculation we recover the bulk grand poten-
tial (2.7), the surface tension y =kpT (k2/167) In[k/Kmax]+ O (1) which is
ultraviolet divergent. Also we find the (nonuniversal) curvature correction
to the grand potential (the term proportional to R) which depends on the
curvatura integra C and the integrated mean curvature D. Notice that the
ultraviolet cutoff only appears in the surface tension. All other terms, and
in particular the curvature corrections, do not depend on the regulariza-
tion procedure.
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In the example of Section 3 of the three-dimensional Coulomb sys-
tem confined in a ball we have found a curvature correction to S equal
to kR/3. For a ball of radius one in the flat space R? the curvatura inte-
gra is C =0 and the mean curvature computed from Eq. (4.8) is J =4 and
the integrated mean curvature is D= 167. Then the correction predicted
by Eq. (4.42), kR(2C + D)/(487) =k R/3, is in agreement with the explicit
result found in the example. For the other example of the Coulomb system
confined in the thick spherical shell, the agreement of our general result
(4.42) with the explicit calculation of Section 3 is also straightforward to
check.

4.3. System Confined in a Square Domain

The above general analysis is valid for a confining manifold with a smooth
boundary. However, it can easily be generalized to a manifold whose boundary
has corners. As an illustration, let us consider the case of a two-dimensional
Coulomb system confined in an square domain of side R and subjected to
Dirichlet boundary conditions for the electric potential.

Conformal field theory predicts that in the case of a two-dimensional
critical system confined in a geometry with corners in the boundary, there
appears a contribution to the free energy (times the inverse temperature)
equal to [0/(24m)](1 — (r/0)*) In R for each corner with interior angle 6.0
In the case of a square, # =m/2, and the contribution per corner equals
%(1 — Qn/7)*)InR=—(1/16)In R. Then, the total contribution of the
four corners is —(1/4)In R. If the analogy of conducting Coulomb systems
with critical systems holds then we should expect a finite-size correction
to the grand potential times 8 equal to (1/4)In R for the corresponding
Coulomb system.

The eigenvalues for this case can be found easily by separation of
variables expressing the Laplace operator in rectangular coordinates and
solving the eigenvalue equation. The spectrum for a system in a square of
side equal to 1 is given by A, ;=—m? (n2+l2), n=1,2,... and I=1,2,...
The heat kernel is

o0 o0 2
O1)=) ™= (Z eﬂ2n2f> (4.43)
k=0

n=1

It can be expressed in terms of the Jacobi theta function

+00 ) 5 )
D3(ulr)= Y TP (4.44)

n=—0oo
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as
O1(t) = % [93(0]imt) — 117 (4.45)

The heat kernel expansion for t — 0 can be found using the Jacobi imagi-
nary transformation®”)

. 1
O3 (u|7) = (—it) 21T 9 (ﬁ‘ - —) (4.46)

T T

This gives
1 e 2 ?
O1(0)=7 |:—1+(m)‘1/2 (1+2Ze_" /’)} (4.47)
n=1

The asymptotic expansion for t — 0 is

on=—— L Lo (4.48)
A PN, 7R t '

Comparing this with expression (4.9) for a smooth boundary, we recog-
nize the first two terms: the volume (area) (V =1) and the surface (perim-
eter) (B =4) terms which are the same. The constant term, on the other
hand, is now equal to 1/4. Applying the same argument developed above
for the general case to this heat kernel we see that this constant term is
the one that gives the coefficient of the logarithmic finite-size correction
for the grand potential. Then the finite-size expansion for this geometry
reads

ﬁQ:ﬂQb—%—i—%ln(KR)—i—o(lnR) (4.49)

with ©Q,, given by Eq. (2.6) with V =R? and the perimeter of the square
B =4R with R the length of a side. The logarithmic finite-size correction
is in agreement with the one predicted by conformal field theory, with the
expected change of sign.
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5. SUMMARY AND PERSPECTIVES

We have illustrated with several examples how to apply the method
of ref. 21 to find the grand potential of a Coulomb system in the low
coupling regime and confined by ideal conductor boundaries. We consid-
ered several examples: in two dimensions the slab and in three dimensions
the slab, the ball and a thick spherical shell. The method can easily be
adapted to other geometries. In all the examples we also computed the
finite-size expansion of the grand potential. For the slab geometries, in
three and two dimensions, we recover a universal algebraic finite-size cor-
rection predicted in ref. 1. For two-dimensional fully-confined systems the
finite-size expansion exhibits a universal logarithmic term similar to the
one predicted for critical systems by conformal field theory.?!

We have also extended the method to confined systems of arbitrary
shape with a smooth boundary. For this general case we showed how the
heat kernel expansion for small argument for the considered geometry is
related to the large-size expansion of the grand potential of the Coulomb
system. From this, we recovered the expressions for the bulk grand poten-
tial and the surface tension which agree with those found in the specific
examples. Regarding the finite-size corrections, in the case of two dimen-
sions we proved the existence of a universal logarithmic finite-size correc-
tion for the grand potential times 8 equal to (x/6)In R with x the Euler
characteristic of the confining manifold. For three dimensional systems we
also found a general prediction for the curvature correction to the grand
potential but it is not universal (it depends on the Debye length).

The general treatment for arbitrary confining geometry exposed here
is done for Dirichlet boundary conditions but it could eventually be
adapted for other kind of boundary conditions, for example for ideal
dielectric boundary conditions, i.e. Neumann boundary conditions for the
electric potential. However the analysis of this kind of boundary con-
ditions requires additional work, because the Laplacian has a vanishing
eigenvalue and the Fredholm determinant is not properly defined.

The method exposed in ref. 21 and used here can be extended to com-
pute the density profiles and correlation functions. An example of such
application for the case of a slab geometry in three dimensions can be
found in ref. 6.
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